Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа № 22

РАССМОТРЕНА

СОГЛАСОВАНА

УТВЕРЖДЕНА

на заседании ШМО

протокол от 17.08.20 № 1

руководитель ШМО

(личная подпись)

Заместитель директора по УВР Spoxeeee 4.11

28.08.20do

(дата)

приказом директора

OTEL 09 LOAD No 91/1-

Директор *

М.Ю. Чиркова

РАБОЧАЯ ПРОГРАММА

Предмет

астрономия

Класс

10

Уровень освоения

базовый

Срок реализации

1 год

Составители программы Воронцова Н.А., учитель высшей категории

Пояснительная записка

Рабочая программа по астрономии для 10 класса составлена на основе программы курса астрономии для 10—11 классов общеобразовательных учреждений (автор В.М. Чаругин). Методическое пособие. 10-11 класс «Просвещение» 2017г.

Общая характеристика учебного предмета

Астрономия в российской школе всегда рассматривалась как курс, который, завершая физикоматематическое образование выпускников средней школы, знакомит их с современными представлениями о строении и эволюции Вселенной и способствует формированию научного мировоззрения. В настоящее время важнейшими задачами астрономии являются формирование представлений о единстве физических законов, действующих на Земле и в безграничной Вселенной, о непрерывно происходящей эволюции нашей планеты, всех космических тел и их систем, а также самой Вселенной.

Цели изучения курса астрономии:

Изучение астрономии на базовом уровне среднего (полного) общего образования направлено на достижение следующих целей:

- осознание принципиальной роли астрономии в познании фундаментальных законов природы и формировании современной естественно-научной картины мира;
- приобретение знаний о физической природе небесных тел и систем, строения и эволюции Вселенной, пространственных и временных масштабах Вселенной, наиболее важных астрономических открытиях, определивших развитие науки и техники;
- овладение умениями объяснять видимое положение и движение небесных тел принципами определения местоположения и времени по астрономическим объектам, навыками практического использования компьютерных приложений для определения вида звездного неба в конкретном пункте для заданного времени;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний по астрономии с использованием различных источников информации и современных информационных технологий;
- использование приобретенных знаний и умений для решения практических задач повседневной жизни;
 - формирование научного мировоззрения;
- формирование навыков использования естественно-научных и особенно физикоматематических знаний для объективного анализа устройства окружающего мира на примере достижений современной астрофизики, астрономии и космонавтики.

Место предмета в учебном плане

Предмет «Астрономия» представлен только на базовом уровне и рассчитан на изучение в течение 34 часов за 1 год обучения в старшей школе.

Планируемые результаты освоения курса

Личностными результатами освоения курса астрономии в средней (полной) школе являются: - формирование умения управлять своей познавательной деятельностью, ответственное отношение к

- формирование умения управлять своей познавательной деятельностью, ответственное отношение к учению, готовность и способность к саморазвитию и самообразованию, а также осознанному построению индивидуальной образовательной деятельности на основе устойчивых познавательных интересов;
- формирование познавательной и информационной культуры, в том числе навыков самостоятельной работы с книгами и техническими средствами информационных технологий;
- формирование убежденности в возможности познания законов природы и их использования на благо развития человеческой цивилизации;
- формирование умения находить адекватные способы поведения, взаимодействия и сотрудничества в процессе учебной и внеучебной деятельности, проявлять уважительное отношение к мнению оппонента в ходе обсуждения спорных проблем науки.

Метапредметные результаты освоения программы предполагают:

- находить проблему исследования, ставить вопросы, выдвигать гипотезу, предлагать альтернативные способы решения проблемы и выбирать из них наиболее эффективный,

классифицировать объекты исследования, структурировать изучаемый материал, аргументировать свою позицию, формулировать выводы и заключения;

- анализировать наблюдаемые явления и объяснять причины их возникновения;
- на практике пользоваться основными логическими приемами, методами наблюдения, моделирования, мысленного эксперимента, прогнозирования;
- выполнять познавательные и практические задания, в том числе проектные;
- извлекать информацию из различных источников (включая средства массовой информации и интернет-ресурсы) и критически ее оценивать;
- готовить сообщения и презентации с использованием материалов, полученных из Интернета и других источников.

Предметные результаты изучения астрономии в средней (полной) школе представлены в содержании курса по темам. Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системнодеятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

Одним из путей повышения мотивации и эффективности учебной деятельности в основной школе является включение учащихся в учебно-исследовательскую и проектную деятельность, которая имеет следующие особенности:

- 1) цели и задачи этих видов деятельности учащихся определяются как их личностными мотивами, так и социальными. Это означает, что такая деятельность должна быть направлена не только на повышение компетентности подростков в предметной области определенных учебных дисциплин, не только на развитие их способностей, но и на создание продукта, имеющего значимость для других;
- 2) учебно-исследовательская и проектная деятельность должна быть организована таким образом, чтобы учащиеся смогли реализовать свои потребности в общении со значимыми, референтными группами одноклассников, учителей и т. д. Строя различного рода отношения в ходе целенаправленной, поисковой, творческой и продуктивной деятельности, подростки овладевают нормами взаимоотношений с разными людьми, умениями переходить от одного вида общения к другому, приобретают навыки индивидуальной самостоятельной работы и сотрудничества в коллективе;
- 3) организация учебно-исследовательских и проектных работ школьников обеспечивает сочетание различных видов познавательной деятельности. В этих видах деятельности могут быть востребованы практически любые способности подростков, реализованы личные пристрастия к тому или иному виду деятельности.

Формы организации учебной деятельности

Учитель выбирает необходимую образовательную траекторию, способную обеспечить визуализацию прохождения траектории обучения с контрольными точками заданий различных видов: информационных, практических, контрольных.

Формы организации учебной деятельности определяются видами учебной работы, спецификой учебной группы, изучаемым материалом, учебными целями.

Возможны следующие организационные формы обучения:

- классно-урочная (изучение нового, практикум, контроль, уроки-зачеты, уроки защиты творческих заданий). В данном случае используются все типы объектов. При выполнении проектных заданий исследование, осуществление межпредметных связей, поиск информации осуществляются учащимися под руководством учителя;
- индивидуальная и индивидуализированная. Позволяют регулировать темп продвижения в обучении каждого школьника сообразно его способностям. При работе в компьютерном классе по заранее подобранным информационным, практическим и контрольным заданиям, собранным из соответствующих объектов, формируется индивидуальная траектория учащегося;
- групповая работа. Возможна работа групп учащихся по индивидуальным заданиям. Предварительно учитель формирует блоки объектов или общий блок, на основании демонстрации которого происходит обсуждение в группах общей проблемы, либо при наличии компьютерного класса, обсуждение мини-задач, которые являются составной частью общей учебной задачи.

Некоторые особенности программы

Важную роль в освоении курса играют проводимые во внеурочное время собственные наблюдения учащихся. Специфика планирования этих наблюдений определяется двумя обстоятельствами. Во-первых, они (за исключением наблюдений Солнца) должны проводиться в вечернее или ночное время. Во-вторых, объекты, природа которых изучается на том или ином уроке, могут быть в это время недоступны для наблюдений. При планировании наблюдений этих объектов, в особенности планет, необходимо учитывать условия их видимости.

Перечень наблюдений.

Наблюдения невооруженным глазом

- 1. Основные созвездия и наиболее яркие звезды осеннего, зимнего и весеннего неба. Изменение их положения с течением времени.
- 2. Движение Луны и смена ее фаз.

Наблюдения в телескоп (виртуальные, по готовым фотографиям)

- 1. Рельеф Луны.
- 2. Фазы Венеры.
- 3. Mapc.
- 4. Юпитер и его спутники.
- 5. Сатурн, его кольца и спутники.
- 6. Солнечные пятна (на экране).
- 7. Двойные звезды.
- 8. Звездные скопления (Плеяды, Гиады).
- 9. Большая туманность Ориона.
- 10. Туманность Андромеды.

Система оценки планируемых результатов

Оценка устных ответов учащихся.

Оценка «5» ставиться в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, а так же правильное определение физических величин, их единиц и способов измерения: правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ собственными примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

<u>Оценка «4»</u> ставиться, если ответ ученика удовлетворяет основным требованиям на оценку 5, но дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом и материалом, усвоенным при изучении др. предметов: если учащийся допустил одну ошибку или не более двух недочётов и может их исправить самостоятельно или с небольшой помощью учителя.

Оценка «З» ставиться, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики, не препятствующие дальнейшему усвоению вопросов программного материала: умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул, допустил не более одной грубой ошибки и двух недочётов, не более одной грубой и одной негрубой ошибки, не более 2-3 негрубых ошибок, одной негрубой ошибки и трёх недочётов; допустил 4-5 недочётов.

<u>Оценка «2»</u> ставится, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочётов чем необходимо для оценки «3».

Оценка письменных контрольных работ.

Оценка «5» ставится за работу, выполненную полностью без ошибок и недочётов.

<u>Оценка «4»</u> ставится за работу выполненную полностью, но при наличии в ней не более одной грубой и одной негрубой ошибки и одного недочёта, не более трёх недочётов.

<u>Оценка «3»</u> ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочётов, не более одной грубой ошибки и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочётов, при наличии 4 - 5 недочётов.

<u>Оценка «2»</u> ставится, если число ошибок и недочётов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы.

Оценка практических работ

Оценка «5» ставится, если учащийся выполняет работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасности труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ погрешностей.

<u>Оценка «4»</u> ставится, если выполнены требования к оценке «5», но было допущено два - три недочета, не более одной негрубой ошибки и одного недочёта.

<u>Оценка «3»</u> ставится, если работа выполнена не полностью, но объем выполненной части таков, позволяет получить правильные результаты и выводы: если в ходе проведения опыта и измерений были допущены ошибки.

<u>Оценка «2»</u> ставится, если работа выполнена не полностью и объем выполненной части работы не позволяет сделать правильных выводов: если опыты, измерения, вычисления, наблюдения производились неправильно.

Во всех случаях оценка снижается, если ученик не соблюдал требования правил безопасности труда.

Оценка тестовых работ.

Оценка 5 ставится в том случае, если учащийся выполнил работу в полном объеме на 96-100%.

Оценка 4 ставится в том случае, если учащийся выполнил работу в объеме 80-95%.

Оценка 3 ставится в том случае, если учащийся выполнил работу в объеме 50-79%.

Оценка 2 ставится в том случае, если учащийся выполнил работу в объеме 11-49%

Перечень ошибок:

Грубые ошибки

- 1. Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов, обозначения физических величин, единицу измерения.
- 2. Неумение выделять в ответе главное.
- 3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения, незнание приемов решения задач, аналогичных ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.
- 4. Неумение читать и строить графики и принципиальные схемы
- 5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.
- 6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.
- 7. Неумение определить показания измерительного прибора.
- 8. Нарушение требований правил безопасного труда при выполнении эксперимента.

Негрубые ошибки

- 1. Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия. Ошибки, вызванные несоблюдением условий проведения опыта или измерений.
- 2. Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.
- 3. Пропуск или неточное написание наименований единиц физических величин.

4. Нерациональный выбор хода решения.

Недочеты

- 1. Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решения задач.
- 2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.
- 3. Отдельные погрешности в формулировке вопроса или ответа.
- 4. Небрежное выполнение записей, чертежей, схем, графиков.
- 5. Орфографические и пунктуационные ошибки.

Содержание курса (34 часов)

10 класс (34 ч)

Введение (1 час)

Введение в астрономию Астрономия – наука о космосе. <u>Роль астрономии в развитии цивилизации.</u> <u>Особенности методов познания в астрономии.</u> Понятие Вселенной. Строение и масштабы Вселенной, и современные наблюдения. Далёкие глубины Вселенной. <u>Эволюция взглядов человека на Вселенную.</u>

Цель изучения данной темы — познакомить учащихся с основными астрономическими объектами, заполняющими Вселенную: планетами, Солнцем, звёздами, скоплениями галактик; физическими процессами, протекающими в них и в окружающем их пространстве. Учащиеся знакомятся с характерными масштабами, небесных тел. Также приводятся сведения о современных оптических, инфракрасных, радио-, рентгеновских телескопах и обсерваториях. Таким образом, учащиеся знакомятся с теми небесными телами и объектами, которые они в дальнейшем будут подробно изучать на уроках астрономии.

Астрометрия (5 часов)

Звёздное небо и видимое движение небесных светил. Что такое созвездие. Основные созвездия Северного полушария. <u>Звездная карта, созвездия, использование компьютерных приложений для отображения звездного неба. Видимая звездная величина. Суточное движение светил.</u>

<u>Небесная сфера. Особые точки небесной сферы. Небесные координаты.</u> Небесный экватор и небесный меридиан; горизонтальные, экваториальные координаты; кульминации светил. Горизонтальная система координат. Экваториальная система координат. Видимое движение планет и Солнца. Эклиптика, точка весеннего равноденствия, неравномерное движение Солнца по эклиптике.

Связь видимого расположения объектов на небе и географических координат наблюдателя. Движение Земли вокруг Солнца. Видимое движение и фазы Луны. Солнечные и лунные затмения. Сарос и предсказания затмений.

<u>Время и календарь.</u> Звёздное и солнечное время, звёздный и тропический год. Устройство лунного и солнечного календаря, проблемы их согласования. Юлианский и григорианский календари.

Целью изучения данной темы — формирование у учащихся о виде звёздного неба, разбиении его на созвездия, интересных объектах в созвездиях и мифологии созвездий, развитии астрономии в античные времена. Задача учащихся проследить, как переход от ориентации по созвездиям к использованию небесных координат позволил в количественном отношении изучать видимые движения тел. Также целью является изучение видимого движения Солнца, Луны и планет и на основе этого — получение представления о том, как астрономы научились предсказывать затмения; получения представления об одной из основных задач астрономии с древнейших времён — измерении времени и ведении календаря.

Наблюдения (**невооруженным глазом**) № 1: «Основные созвездия и наиболее яркие звезды осеннего, зимнего и весеннего неба. Изменение их положения с течением времени».

Наблюдения (невооруженным глазом) № 2: «Движение Луны и смена ее фаз»

Контрольная работа № 1 по теме «Практические основы астрономии».

Небесная механика (3 часа)

Представления о строении Солнечной системы в античные времена и в средневековье. <u>Геоцентрическая система</u> мира. Гелиоцентрическая система мира, доказательство вращения Земли вокруг Солнца. Методы определения расстояний до тел Солнечной системы и их размеров. Параллакс звёзд и определение расстояния до них, парсек.

Структура и масштабы Солнечной системы. Конфигурация и условия видимости планет. Небесная механика. Законы Кеплера Открытие И.Кеплером законов движения планет. Открытие закона Всемирного тяготения и обобщённые законы Кеплера. Определение масс небесных тел.

<u>Движение искусственных небесных тел</u>. Космические скорости. Расчёты первой и второй космической скорости и их физический смысл. <u>История развития отечественной космонавтики.</u> <u>Первый искусственный спутник Земли, полет Ю.А. Гагарина вокруг Земли по круговой орбите.</u> <u>Достижения современной космонавтики.</u>

Цель изучения темы — развитее представлений о строении Солнечной системы: геоцентрическая и гелиоцентрические системы мира; законы Кеплера о движении планет и их обобщение Ньютоном; космические скорости и межпланетные перелёты.

Строение Солнечной системы (7 часов)

Современные представления о Солнечной системе. <u>Происхождение Солнечной системы.</u> Состав Солнечной системы. <u>Планеты земной группы</u> и <u>планеты- гиганты,</u> их принципиальные различия. Облако комет Оорта и Пояс Койпера. Размеры тел солнечной системы.

Планета Земля. Форма и размеры Земли. Внутреннее строение Земли. Роль парникового эффекта в формировании климата Земли.

<u>Система Земля - Луна.</u> Формирование поверхности Луны, лунный рельеф и его природа. Природа приливов и отливов на Земле и их влияние на движение Земли и Луны; процессия земной оси и движение точки весеннего равноденствия.

Планеты земной группы. Физические свойства Меркурия, Марса и Венеры; исследования планет земной группы космическими аппаратами. Межпланетные перелёты. Понятие оптимальной траектории полёта к планете. Спутники и кольца планет. Эволюция орбит спутников Марса Фобоса и Деймоса.

Планеты-гиганты. Физические свойства Юпитера, Сатурна, Урана и Нептуна; вулканическая деятельность на спутнике Юпитера Ио; природа колец вокруг планет-гигантов. Планеты-карлики и их свойства.

Малые тела Солнечной системы. Природа и движение астероидов. Астероидная опасность. Специфика движения групп астероидов Троянцев и Греков. Природа и движение комет. Пояс Койпера и Облако комет Оорта. Природа метеоров и метеоритов. Природа падающих звёзд, метеорные потоки и их радианты. Связь между метеорными потоками и кометами. Природа каменных и железных метеоритов. Природа метеоритных кратеров.

Цель изучения темы — получить представление о строении Солнечной системы, изучить физическую природу Земли и Луны, явления приливов и прецессии; понять физические особенности строения планет земной группы, планет-гигантов и планет-карликов; узнать об особенностях природы и движения астероидов, получить общие представления о кометах, метеорах и метеоритах; узнать о развитии взглядов на происхождение Солнечной системы и о современных представлениях о её происхождении.

Практическая работа № 1с планом Солнечной системы.

Практическая работа № 2 «Две группы планет Солнечной системы».

Наблюдения (по фотографиям) № 3: «Рельеф Луны», «Фазы Венеры», «Марс», «Юпитер и его спутники», «Сатурн, его кольца и спутники»

Контрольная работа № 2 по теме «Строение Солнечной системы».

Астрофизика и звездная астрономия (8)

Методы астрофизических исследований. <u>Практическое применение астрономических исследований.</u> Наземные и космические телескопы, принцип их работы. Устройство и характеристики телескопов рефракторов и рефлекторов. Устройство радиотелескопов,

радиоинтерферометры. Электромагнитное излучение, космические лучи и гравитационные волны как источник информации о природе и свойствах небесных тел. Спектральный анализ. Эффект Доплера.

Солнце. Строение Солнца, солнечной атмосферы. Основные характеристики Солнца. Определение массы, температуры и химического состава Солнца. Проявления солнечной активности: пятна, вспышки, протуберанцы, её влияние на Землю и биосферу. Периодичность солнечной активности. Роль магнитных полей на Солнце. Солнечно-земные связи.

Внутреннее строение Солнца. Теоретический расчёт температуры в центре Солнца. Закон смещения Вина. Закон Стефана-Больцмана. Ядерный источник энергии и термоядерные реакции синтеза гелия из водорода, перенос энергии из центра Солнца наружу, конвективная зона. Нейтринный телескоп и наблюдения потока нейтрино от Солнца.

Звезды: основные физико-химические характеристики и их взаимная связь. Разнообразие звездных характеристик и их закономерности: массы, светимости, температуры и химического состава. Спектральная классификация звёзд и её физические основы. Диаграмма «спектрсветимость» — светимость звёзд, связь между массой и светимостью звёзд. Определение расстояния до звезд, параллакс. Внутреннее строение звёзд и источники энергии звезд. Строение звезды главной последовательности.

Строение звёзд красных гигантов и сверхгигантов. Белые карлики, нейтронные звёзды, пульсары и чёрные дыры Строение звёзд белых карликов и предел на их массу — предел Чандрасекара. Пульсары и нейтронные звёзды. Природа чёрных дыр и их параметры. <u>Двойные, кратные и переменные звёзды</u> Наблюдения двойных и кратных звёзд. Затменно-переменные звёзды. Определение масс двойных звёзд.

Внесолнечные планеты. Пульсирующие переменные звёзды, кривые изменения блеска цефеид. Новые и сверхновые звёзды Характеристики вспышек новых звёзд. Связь новых звёзд с тесными двойными системами, содержащими звезду белый карлик. Перетекание вещества и ядерный взрыв на поверхности белого карлика. Характеристики вспышек сверхновых звёзд. Гравитационный коллапс белого карлика. Коричневые карлики.

<u>Эволюция звезд, ее этапы и конечные стадии:</u> рождение, жизнь и смерть звёзд. Расчёт продолжительности жизни звёзд разной массы на главной последовательности. Переход в красные гиганты и сверхгиганты после исчерпания водорода. Спокойная эволюция маломассивных звёзд, и гравитационный коллапс и взрыв с образованием нейтронной звезды или чёрной дыры массивной звезды. Определение возраста звёздных скоплений и отдельных звёзд и проверка теории эволюции звёзд.

Цель изучения темы — получить представление о разных типах оптических телескопов, радиотелескопах и методах наблюдений с их помощью; о методах и результатах наблюдений Солнца, его основных характеристиках; о проявлениях солнечной активности и связанных с ней процессах на Земле и в биосфере; о том, как астрономы узнали о внутреннем строении Солнца и как наблюдения солнечных нейтрино подтвердили наши представления о процессах внутри Солнца; получить представление: об основных характеристиках звёзд, их взаимосвязи, внутреннем строении звёзд различных типов, понять природу белых карликов, нейтронных звёзд и чёрных дыр, узнать как двойные звёзды помогают определить массы звёзд, а пульсирующие звёзды — расстояния во Вселенной; получить представление о новых и сверхновых звёздах, узнать, как живут и умирают звёзлы.

Наблюдения № 4 (по фотографиям): «Солнечные пятна» (на экране). Наблюдения № 5 (по фотографиям): «Двойные звезды» Контрольная работа № 3 по теме «Солнце и звезды».

Млечный Путь - наша Галактика (3 часа.)

Состав и структура Галактики. Межзвездный газ и пыль. Наблюдаемые характеристики отражательных и диффузных туманностей; распределение их вблизи плоскости Галактики; спиральная структура Галактики. Концентрация газовых и пылевых туманностей в Галактике.

Звездные скопления. Рассеянные и шаровые звёздные скопления Наблюдаемые свойства рассеянных звёздных скоплений. Наблюдаемые свойства шаровых звёздных скоплений. Распределение и характер движения скоплений в Галактике. Распределение звёзд, скоплений, газа и пыли в Галактике.

Сверхмассивная чёрная дыра в центре Галактики и космические лучи. Инфракрасные наблюдения движения звёзд в центре Галактики и обнаружение в центре Галактики сверхмассивной черной дыры. Расчёт параметров сверхмассивной чёрной дыры. Наблюдения космических лучей и их связь со взрывами сверхновых звёзд.

Цель изучение темы — получить представление о нашей Галактике — Млечном Пути, об объектах, её составляющих, о распределении газа и пыли в ней, рассеянных и шаровых скоплениях, о её спиральной структуре; об исследовании её центральных областей, скрытых от нас сильным поглощением газом и пылью, а также о сверхмассивной чёрной дыре, расположенной в самом центре Галактики.

Галактики (3 час)

<u>Открытие других галактик. Многообразие галактик и их основные характеристики</u>. Свойства спиральных, эллиптических и неправильных галактик. <u>Красное смещение</u> в спектрах галактик и определение расстояния до них. <u>Закон Хаббла</u>. Вращение галактик и тёмная материя в них.

Активные галактики и квазары. Природа активности галактик, радиогалактики и взаимодействующие галактики. Необычные свойства квазаров, их связь с ядрами галактик и активностью чёрных дыр в них. Скопления галактик.

Наблюдаемые свойства скоплений галактик, рентгеновское излучение, температура и масса межгалактического газа, необходимость существования тёмной материи в скоплениях галактик. Оценка массы тёмной материи в скоплениях. Ячеистая структура распределения галактики скоплений галактик.

Цель изучения темы — получить представление о различных типах галактик, об определении расстояний до них по наблюдениям красного смещения линий в их спектрах, и о законе Хаббла; о вращении галактик и скрытой тёмной массы в них; получить представление об активных галактиках и квазарах и о физических процессах, протекающих в них, о распределении галактик и их скоплений во Вселенной, о заполняющим скопления галактик.

Наблюдения № 6 (по фотографиям): «Звездные скопления (Плеяды, Гиады)», «Большая туманность Ориона», «Туманность Андромеды»

Строение и эволюция Вселенной (2 часа)

<u>Представление о космологии. Большой Взрыв.</u> Закон всемирного тяготения и представления о конечности и бесконечности Вселенной. Фотометрический парадокс и противоречия между классическими представлениями о строении Вселенной и наблюдениями. <u>Эволюция Вселенной.</u> Необходимость привлечения общей теории относительности для построения модели Вселенной. Связь между геометрических свойств пространства Вселенной с распределением и движением материи в ней. Расширяющаяся Вселенная Связь средней плотности материи с законом расширения и геометрическими свойствами Вселенной. Евклидова и неевклидова геометрия Вселенной. Определение радиуса и возраста Вселенной.

Модель «горячей Вселенной» и реликтовое излучения. Образование химических элементов во Вселенной. Обилие гелия во Вселенной и необходимость образования его на ранних этапах эволюции Вселенной. Необходимость не только высокой плотности вещества, но и его высокой температуры на ранних этапах эволюции Вселенной.

Цель изучения темы — получить представление об уникальном объекте — Вселенной в целом, узнать как решается вопрос о конечности или бесконечности Вселенной, о парадоксах, связанных с этим, о теоретических положениях общей теории относительности, лежащих в основе построения космологических моделей Вселенной; узнать какие наблюдения привели к созданию расширяющейся модели Вселенной, о радиусе и возрасте Вселенной, о высокой температуре вещества в начальные периоды жизни Вселенной и о природе реликтового излучения, о современных наблюдениях ускоренного расширения Вселенной.

Современные проблемы астрономии (2 часа)

Ускоренное расширение Вселенной и <u>тёмная энергия</u>. Наблюдения сверхновых звёзд I типа в далёких галактиках и открытие ускоренного расширения Вселенной. Открытие силы всемирного

отталкивания. Тёмная энергия увеличивает массу Вселенной по мере её расширения. Природа силы Всемирного отталкивания.

Обнаружение планет возле других звёзд. Наблюдения за движением звёзд и определения масс невидимых спутников звёзд, возмущающих их прямолинейное движение. Методы обнаружения экзопланет. Оценка условий на поверхностях экзопланет. Поиск экзопланет с комфортными условиями для жизни на них.

Поиски жизни и разума во Вселенной Развитие <u>представлений о возникновении и существовании жизни во Вселенной.</u> Современные оценки количества высокоразвитых цивилизаций в Галактике. Попытки обнаружения и посылки сигналов внеземным цивилизациям.

Цель изучения данной темы — показать современные направления изучения Вселенной ,рассказать расстояний до галактик с помощью наблюдений сверхновых звёзд и об открытии ускоренного расширения Вселенной, о роли тёмной энергии и силы всемирного представление об экзопланетах и поиске экзопланет, благоприятных для жизни; о возможном числе высокоразвитых цивилизаций в нашей Галактике, о методах поисках жизни и внеземных цивилизаций и проблемах связи с ними.

Тематическое планирование

N_0N_0	Название	Кол-во	Контрольные	Наблюдения	Практические
п/п		часов	работы		работы
1	Введение	1			
2	Астрометрия	5	1	2	
3	Небесная механика	3			
4	Строение солнечной системы	7	1	1	2
5	Астрофизика и звездная астрономия	8	1	2	
6	Млечный путь – наша Галактика	3			
7	Галактики	3		1	
8	Строение и эволюция Вселенной	2			
9	Современные проблемы астрономии	2			
	Итого:	34	3	6	2

Учебно-методическое обеспечение программы

- 1. Учебник астрономии «Астрономия» для 10–11 классов общеобразовательных учреждений автора: В.М. Чаругина, издательства «Просвещение» 2017г.
- 2. Методическое пособие 10-11 классы. Базовый уровень: учебное пособие для учителей образовательных организаций. М.: просвещение. 2017. 32 с. (Сферы 1-11).

Материально-техническое обеспечение учебного процесса

- 1. Телескоп.
- 2. Спектроскоп.
- 3. Теллурий.
- 4. Модель небесной сферы.
- 5. Звездный глобус.
- 6. Подвижная карта звездного неба.
- 7. Глобус Луны.
- 8. Карта Луны.
- 9. Карта Венеры.

- 10. Карта Марса.
- 11. Справочник любителя астрономии.
- 12. Школьный астрономический календарь (на текущий учебный год).

Наглядные пособия

- 1. Вселенная.
- 2. Солнце.
- 3. Строение Солнца.
- 4. Планеты земной группы.
- 5. Луна.
- 6. Планеты-гиганты.
- 7. Малые тела Солнечной системы.
- 8. Звезлы.
- 9. Наша Галактика.
- 10. Другие галактики

Приложения

Темы проектов и исследований

- 1. Конструирование и установка глобуса Набокова.
- 2. Определение высоты гор на Луне по способу Галилея.
- 3. Определение условий видимости планет в текущем учебном году.
- 4. Наблюдение солнечных пятен с помощью камеры-обскуры.
- 5. Изучение солнечной активности по наблюдению солнечных пятен.
- 6. Определение температуры Солнца на основе измерения солнечной постоянной.
- 7. Определение скорости света по наблюдениям моментов затмений спутника Юпитера.
- 8. Изучение переменных звезд различного типа.
- 9. Определение расстояния до удаленных объектов на основе измерения параллакса. 10. Наблюдение метеорного потока.
- 11. Исследование ячеек Бенара.
- 12. Конструирование школьного планетария.